Please wait a minute...
Journal of Neurorestoratology  2019, Vol. 7 Issue (4): 161-170    doi: 10.26599/JNR.2019.9040020
Review Article     
Research and application progress on dural substitutes
Weizuo Wang, Qiang Ao(✉)
Department of Tissue Engineering, China Medical University, Shenyang 110122, Liaoning, China
Download: PDF (643 KB)      HTML
Export: BibTeX | EndNote (RIS)      


Dural defects are a common problem in clinical practice, and various types of dural substitutes have been used to deal with dural defects. These play an important role in dural repair. Dural substitutes have gradually reached researchers, neurosurgeons, and patients for approval. This article summarizes the structural characteristics of the dura mater and its regeneration after injury, and reviews the state of progress in research and application. It will provide a reference for the development and application of dural substitutes.

Key wordsdural substitutes      dural defect      reconstruction      materials      tissue engineering     
Received: 18 June 2019      Published: 29 November 2019
Corresponding Authors: Qiang Ao   
Cite this article:

Weizuo Wang, Qiang Ao. Research and application progress on dural substitutes. Journal of Neurorestoratology, 2019, 7: 161-170.

URL:     OR

[1]   Standring S. Gray’s anatomy: the anatomical basis of clinical practice. 41st ed. Elsevier, 2016.
[2]   Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015, 523(7560): 337-341.
[3]   de Kegel D, Vastmans J, Fehervary H, et al. Biomechanical characterization of human Dura mater. J Mech Behav Biomed Mater. 2018, 79: 122-134.
[4]   van Noort R, Black MM, Martin TR, et al. A study of the uniaxial mechanical properties of human Dura mater preserved in glycerol. Biomaterials. 1981, 2(1): 41-45.
[5]   Chauvet D, Carpentier A, Allain JM, et al. Histological and biomechanical study of Dura mater applied to the technique of Dura splitting decompression in Chiari type I malformation. Neurosurg Rev. 2010, 33(3): 287-294; discussion 295.
[6]   Protasoni M, Sangiorgi S, Cividini A, et al. The collagenic architecture of human Dura mater. J Neurosurg. 2011, 114(6): 1723-1730.
[7]   Ding WL, Liu XZ. Systematic Anatomy. 9th ed. Beijing: People’s Medical Publishing House, 2018.
[8]   Vandenabeele F, Creemers J, Lambrichts I. Ultrastructure of the human spinal arachnoid mater and Dura mater. J Anat. 1996, 189(Pt 2): 417-430.
[9]   Kapoor C, Vaidya S, Wadhwan V, et al. Seesaw of matrix metalloproteinases (MMPs). J Can Res Ther. 2016, 12(1): 28-35.
[10]   Lu KG, Stultz CM. Insight into the degradation of type-I collagen fibrils by MMP-8. J Mol Biol. 2013, 425(10): 1815-1825.
[11]   Laun A, Tonn JC, Jerusalem C. Comparative study of lyophilized human Dura mater and lyophilized bovine pericardium as dural substitutes in neurosurgery. Acta Neurochir (Wien). 1990, 107(1/2): 16-21.
[12]   Centonze R, Agostini E, Massaccesi S, et al. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation. Asian J Neurosurg. 2016, 11(3): 201-205.
[13]   Abbe R. Rubber tissue for meningeal adhesions. Trans Am Surg Assoc. 1895, 13: 490-491.
[14]   Craig AB, Ellis AG. I. an experimental and histological study of cargile membrane: with reference to (1) its efficacy in preventing adhesion in the abdominal and cranial cavities and around nerves and tendons, and (2) its ultimate fate in the tissues. Ann Surg. 1905, 41(6): 801-822.
[15]   Dandy WE. Pneumocephalus (intracranial penumatocele or aerocele). Arch Surg. 1926, 12(5): 949-982.
[16]   Campbell JB, Bassett CAL, Robertson JW. Clinical use of freeze-dried human Dura mater. J Neurosurg. 1958, 15(2): 207-214.
[17]   Sharkey PC, Usher FC, Robertson RC, et al. Lyophilized human Dura mater as a dural substitute. J Neurosurg. 1958, 15(2): 192-198.
[18]   G?rtler M, Braun M, Becker I, et al. Animal experiments with a new Dura graft (polytetrafluorethylene)—results. Neurochirurgia (Stuttg). 1991, 34(4): 103-106.
[19]   Perrini P. Technical nuances of autologous pericranium harvesting for dural closure in Chiari malformation surgery. J Neurol Surg B Skull Base. 2015, 76(2): 90-93.
[20]   Chen JC, Li YN, Wang T, et al. Comparison of posterior Fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in adult patients: A retrospective analysis of 103 patients. Medicine (Baltimore). 2017, 96(4): e5945.
[21]   Rosomoff HL, Malinin TI. Freeze-dried allografts of Dura mater - 20 years’ experience. Transplant Proc. 1976, 8(2 ): 133-138.
[22]   Thadani V, Penar PL, Partington J, et al. Creutzfeldt- Jakob disease probably acquired from a cadaveric Dura mater graft. Case report. J Neurosurg. 1988, 69(5): 766-769.
[23]   Kobayashi A, Kitamoto T, Mizusawa H. Iatrogenic creutzfeldt–Jakob disease. In: Human Prion Diseases. Elsevier, 2018.
[24]   Ae R, Hamaguchi T, Nakamura Y, et al. Update: Dura mater graft-associated creutzfeldt-Jakob disease - Japan, 1975-2017. MMWR Morb Mortal Wkly Rep. 2018, 67(9): 274-278.
[25]   Shijo M, Honda H, Koyama S, et al. Dura mater graft- associated Creutzfeldt-Jakob disease with 30-year incubation period. Neuropathology. 2017, 37(3): 275-281.
[26]   Marton E, Giordan E, Gioffrè G, et al. Homologous cryopreserved amniotic membrane in the repair of myelomeningocele: preliminary experience. Acta Neurochir (Wien). 2018, 160(8): 1625-1631.
[27]   Tomita T, Hayashi N, Okabe M, et al. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery. J Neurol Surg B Skull Base. 2012, 73(5): 302-307.
[28]   Lee JH, Choi SK, Kang SY. Reconstruction of chronic complicated scalp and dural defects using acellular human dermis and latissimus dorsi myocutaneous free flap. Arch Craniofac Surg. 2015, 16(2): 80-83.
[29]   Azzam D, Romiyo P, Nguyen T, et al. Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and nonautologous dural substitutes. World Neurosurg. 2018, 113: 244-248.
[30]   Seo Y, Kim JW, Dho YS, et al. Evaluation of the safety and effectiveness of an alternative dural substitute using Porcine pericardium for duraplasty in a large animal model. J Clin Neurosci. 2018, 58: 187-191.
[31]   Sun HT, Wang HD, Diao YF, et al. Large retrospective study of artificial Dura substitute in patients with traumatic brain injury undergo decompressive craniectomy. Brain Behav. 2018, 8(5): e00907.
[32]   Lee CK, Mokhtari T, Connolly ID, et al. Comparison of Porcine and bovine collagen dural substitutes in posterior Fossa decompression for chiari I malformation in adults. World Neurosurg. 2017, 108: 33-40.
[33]   Li Q, Mu LL, Zhang FH, et al. A novel fish collagen scaffold as dural substitute. Mater Sci Eng: C. 2017, 80: 346-351.
[34]   Li Q, Zhang FH, Wang HM, et al. Preparation and characterization of a novel acellular swim bladder as dura mater substitute. Neurol Res. 2019, 41(3): 242-249.
[35]   Pierson M, Birinyi PV, Bhimireddy S, et al. Analysis of decompressive craniectomies with subsequent cranioplasties in the presence of collagen matrix dural substitute and polytetrafluoroethylene as an adhesion preventative material. World Neurosurg. 2016, 86: 153-160.
[36]   Xiong NX, Tan DA, Fu P, et al. Healing of deep wound infection without removal of non-absorbable Dura mater (neuro-patch?): A case report. J Long Term Eff Med Implants. 2016, 26(1): 43-48.
[37]   Huang YH, Lee TC, Chen WF, et al. Safety of the nonabsorbable dural substitute in decompressive craniectomy for severe traumatic brain injury. J Trauma. 2011, 71(3): 533-537.
[38]   Deng KX, Yang YY, Ke YQ, et al. A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for Dura repairing. Neurol Res. 2017, 39(9): 819-829.
[39]   Schmalz P, Griessenauer C, Ogilvy CS, et al. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: A technical note. Cureus. 2018, 10(1): e2127.
[40]   Suwanprateeb J, Luangwattanawilai T, Theeranattapong T, et al. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute. J Mater Sci Mater Med. 2016, 27(7): 122.
[41]   Chi YY, Le YJ, Liu XZ, et al. Biological properties, degradation and absorption of collagen sponges in vivo (in Chinese). Chin J Tissue Eng Res. 2014, 18: 5515-5519.
[42]   Zhang YL, Zeng YL, Zou LJ, et al. Antigenicity of freeze-dried irradiated pig dura mater (in Chinese). J Clin Rehabilitative Tissue Eng Res. 2010, 14(53): 9950-9952.
[43]   Zhang YL, Zeng YL, Xin GH. Determination of freeze-dried and irradiated porker dural resistant ability to collagenase digestion and biomechanics. J Clin Rehabilitative Tissue Eng Res. 2008, 12: 8075-8078.
[44]   Wu LC, Kuo YJ, Sun FW, et al. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular Porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017, 18(3): 383-396.
[45]   Han L, Zhang ZW, Wang BH, et al. Construction and biocompatibility of a thin type I/II collagen composite scaffold. Cell Tissue Bank. 2018, 19(1): 47-59.
[46]   Xu Y, Cui WG, Zhang YX, et al. Hierarchical micro/nanofibrous bioscaffolds for structural tissue regeneration. Adv Healthcare Mater. 2017, 6(13): 1601457.
[47]   Hu Y, Dan WH, Xiong SB, et al. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi- natural tissue engineering scaffold. Acta Biomater. 2017, 47: 135-148.
[48]   Lv FY, Dong RH, Li ZJ, et al. In situ precise electrospinning of medical glue fibers as nonsuture dural repair with high sealing capability and flexibility. Int J Nanomedicine. 2016, 11: 4213-4220.
[49]   Kurpinski K, Patel S. Dura mater regeneration with a novel synthetic, bilayered nanofibrous dural substitute: an experimental study. Nanomedicine (Lond). 2011, 6(2): 325-337.
[50]   Flanagan KE, Tien LW, Elia R, et al. Development of a sutureless dural substitute from Bombyx mori silk fibroin. J Biomed Mater Res Part B Appl Biomater. 2015, 103(3): 485-494.
[51]   Visanji NP, Lang AE, Munoz DG. Lymphatic vasculature in human dural superior sagittal sinus: Implications for neurodegenerative proteinopathies. Neurosci Lett. 2018, 665: 18-21.
[52]   Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res. 2016, 366(3): 667-677.
[53]   Patel TK, Habimana-Griffin L, Gao XF, et al. Dural lymphatics regulate clearance of extracellular tau from the CNS. Mol Neurodegener. 2019, 14(1): 11.
[54]   Yanev P, Poinsatte K, Hominick D, et al. Impaired meningeal lymphatic vessel development worsens stroke outcome. J Cereb Blood Flow Metab. 2019: 0271678X1882292.
[55]   Wen YR, Yang JH, Wang X, et al. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen Res. 2018, 13(4): 709-716.
[1] Yimeng Wang, Yuan Zhang, Xuemin Li, Qiqing Zhang. The progress of biomaterials in peripheral nerve repair and regeneration[J]. Journal of Neurorestoratology, 2020, 8(4): 252-269.
[2] Xianli Lv, Chuhan Jiang, Shikai Liang. Small ruptured and unruptured complex cerebral aneurysms: Single center experience of low-profile visualized intraluminal support stent[J]. Journal of Neurorestoratology, 2019, 7(4): 235-241.
[3] Wenbin Ding , Shaocheng Zhang, Dajiang Wu , Yanpeng Zhang , Hualong Ye. Hand function reconstruction in patients with chronic incomplete lower cervical spinal cord injury by nerve segment insert grafting: a preliminary clinical report[J]. Journal of Neurorestoratology, 2019, 7(3): 129-135.
[4] Andrey S. Bryukhovetskiy. Translational experience of 28 years of use of the technologies of regenerative medicine to treat complex consequences of the brain and spinal cord trauma: Results, problems and conclusions[J]. Journal of Neurorestoratology, 2018, 6(1): 99-114.