Please wait a minute...
Journal of Neurorestoratology  2020, Vol. 8 Issue (3): 172-181    doi: 10.26599/JNR.2020.9040018
Review Article     
Review of clinical nerve repair strategies for neurorestoration of central nervous system tumor damage
Xinyu Wang, Nan Sun, Xiangqi Meng, Meng Chen, Chuanlu Jiang, Jinquan Cai(✉)
Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang, China
Download: PDF (1018 KB)      HTML
Export: BibTeX | EndNote (RIS)      


Central nervous system (CNS) tumors are common. In recent years, with the continuous development and popularization of neurosurgery and the advancement of diagnostic and therapeutic instruments, the diagnosis and treatment of diseases have made great progress, but the prognosis of patients depends on multiple clinical factors. In this study, we selected various literatures in the PubMed and Google Scholar search engines using the keywords "nerve repair strategies" , "central nervous system tumor" as well as searched scientifically reviewed historical perspectives and recent advancements and achievements in Neurorestoratology of the CNS. Therefore, this study focuses on the Neurorestoratology of the CNS and its prospects, aiming to provide scientific guidance for the clinical diagnosis and treatment of CNS tumors in the future, and improve the prognosis and quality of life of patients.

Key wordscentral nervous system tumor      nerve repair strategy      cell therapy      neural prostheses     
Received: 01 July 2020      Published: 19 October 2020
Corresponding Authors: Jinquan Cai   
Cite this article:

Xinyu Wang, Nan Sun, Xiangqi Meng, Meng Chen, Chuanlu Jiang, Jinquan Cai. Review of clinical nerve repair strategies for neurorestoration of central nervous system tumor damage. Journal of Neurorestoratology, 2020, 8: 172-181.

URL:     OR

Fig. 1Flow diagram of literature and screen strategy.
[1]   GBD Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18(5): 459-480.
[2]   Kang Y, Ding H, Zhou HX, et al. Epidemiology of worldwide spinal cord injury: a literature review. J Neurorestoratology. 2017, 6: 1-9.
[3]   Yang R, Guo L, Wang P, et al. Epidemiology of spinal cord injuries and risk factors for complete injuries in Guangdong, China: a retrospective study. PLoS One. 2014, 9(1): e84733.
[4]   Burt AA. (iii) The epidemiology, natural history and prognosis of spinal cord injury. Curr Orthop. 2004, 18(1): 26-32.
[5]   Kumar R, Lim J, Mekary RA, et al. Traumatic spinal injury: global epidemiology and worldwide volume. World Neurosurg. 2018, 113: e345-e363.
[6]   Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma. 2004, 21(10): 1355-1370.
[7]   Huang HY, Sharma HS. Neurorestoratology: one of the most promising new disciplines at the forefront of neuroscience and medicine. J Neurorestoratol. 2013, 1: 37-41.
[8]   Huang HY, Chen L, Wang HM, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J. 2003, 116(10):1488-1491.
[9]   International Association of Neurorestoratology. Beijing declaration of International Association of Neurorestoratology (IANR). Cell Transplant. 2009, 18(4): 487.
[10]   Huang HY, Chen L, Sanberg PR. Clinical achievements, obstacles, falsehoods, and future directions of cell-based neurorestoratology. Cell Transplant. 2012, 21(): S3-S11.
[11]   Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991, 75(1): 15-26.
[12]   Shende P, Subedi M. Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother. 2017, 91: 693-706.
[13]   Reiter RJ, Carneiro RC, Oh CS. Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metab Res. 1997, 29(8): 363-372.
[14]   Chen LF, Chen W, Zhang MB, et al. Comparison of therapeutic effects of melatonin by two different routes in focal cerebral ischemic rats. J Neurorestoratology. 2019, 7(1): 47-53.
[15]   Matsushita M, Nakagawa H, Namiki S, et al. Effects of urinary function and erectile function on the use of mecobalamin after nerve sparing radical prostatectomy (in Janpanese). Nippon Hinyokika Gakkai Zasshi. 2009, 100(1): 7-11.
[16]   Gan L, Qian MQ, Shi KQ, et al. Restorative effect and mechanism of mecobalamin on sciatic nerve crush injury in mice. Neural Regen Res. 2014, 9(22): 1979-1984.
[17]   Geisler FH, Coleman WP, Grieco G, et al. The Sygen multicenter acute spinal cord injury study. Spine. 2001, 26(24 ): S87-S98.
[18]   Ledeen RW, Wu GS. The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci. 2015, 40(7): 407-418.
[19]   Hyder F, Patel AB, Gjedde A, et al. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab. 2006, 26(7): 865-877.
[20]   Wennberg AMV, Hagen CE, Edwards K, et al. Association of antidiabetic medication use, cognitive decline, and risk of cognitive impairment in older people with type 2 diabetes: results from the population-based Mayo Clinic Study of Aging. Int J Geriatr Psychiatry. 2018, 33(8): 1114-1120.
[21]   Liu Q, Li S, Quan H, et al. Vitamin B12 status in metformin treated patients: systematic review. PLoS One. 2014, 9(6): e100379.
[22]   den Elzen WP, Westendorp RG, Fr?lich M, et al. Vitamin B12 and folate and the risk of Anemia in old age: the Leiden 85-Plus Study. Arch Intern Med. 2008, 168(20): 2238-2244.
[23]   Ruegsegger GN, Vanderboom PM, Dasari S, et al. Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight. 2019, 4(18):e130681.
[24]   Trehan SK, Model Z, Lee SK. Nerve repair and nerve grafting. Hand Clin. 2016, 32(2): 119-125.
[25]   Wolfe SW, Johnsen PH, Lee SK, et al. Long-nerve grafts and nerve transfers demonstrate comparable outcomes for axillary nerve injuries. J Hand Surg Am. 2014, 39(7): 1351-1357.
[26]   Murji A, Redett RJ, Hawkins CE, et al. The role of intraoperative frozen section histology in obstetrical brachial plexus reconstruction. J Reconstr Microsurg. 2008, 24(3): 203-209.
[27]   McAllister RM, Gilbert SE, Calder JS, et al. The epidemiology and management of upper limb peripheral nerve injuries in modern practice. J Hand Surg Br. 1996, 21(1): 4-13.
[28]   Guest J, Dietrich WD. Commentary regarding the recent publication by Tabakow et al., “Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging”. J Neurotrauma. 2015, 32(15): 1176-1178.
[29]   Tang J, Ma J, Yang L, et al. The feasibility study of extradural nerve anastomosis technique for canine bladder reinnervation after spinal cord injury. J Spinal Cord Med. 2016, 39(6): 679-685.
[30]   Wein AJ. Re: challenges for restoration of lower urinary tract innervation in patients with spinal cord injury: a European single-center retrospective study with long-term follow-up. J Urol. 2017, 197(5): 1316-1317.
[31]   Hill EJR, Fox IK. Current best peripheral nerve transfers for spinal cord injury. Plast Reconstr Surg. 2019, 143(1): 184e-198e.
[32]   Xiao CG, Du MX, Dai CP, et al. An artificial somatic-central nervous system-autonomic reflex pathway for controllable micturition after spinal cord injury: preliminary results in 15 patients. J Urol. 2003, 170(4 Part 1): 1237-1241.
[33]   Graham ME, Westerberg BD, Lea J, et al. Shared decision making and decisional conflict in the Management of Vestibular Schwannoma: a prospective cohort study. J Otolaryngol Head Neck Surg. 2018, 47(1): 52.
[34]   Halliday J, Rutherford SA, McCabe MG, et al. An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev Neurother. 2018, 18(1): 29-39.
[35]   Younes E, Montava M, Bachelard-Serra M, et al. Intracanalicular vestibular schwannomas: initial clinical manifestation, imging classification, and risk stratification for management proposal. Otol Neurotol. 2017, 38(9): 1345-1350.
[36]   Jia H, Nguyen Y, De Seta D, et al. Management of sporadic vestibular schwannoma with contralateral nonserviceable hearing. Laryngoscope. 2020, 130(6): E407-E415.
[37]   Deshpande K, Buchanan I, Martirosian V, et al. Clinical perspectives in brain metastasis. Cold Spring Harb Perspect Med. 2020, 10(6): a037051.
[38]   Zhang H, Wang RZ, Yu YQ, et al. Glioblastoma treatment modalities besides surgery. J Cancer. 2019, 10(20): 4793-4806.
[39]   Hassani FD, Fadli M, El Abbadi N. Pituitary sarcoidosis mimicking pituitary adenoma: case report and literature review. Pan Afr Med J. 2019, 33: 92.
[40]   Nellis JC, Sharon JD, Pross SE, et al. Multifactor influences of shared decision - making in acoustic neuroma treatment. Otol Neurotol. 2017, 38(3): 392-399.
[41]   Merker VL, Dai AN, Radtke HB, et al. Increasing access to specialty care for rare diseases: a case study using a foundation sponsored clinic network for patients with neurofibromatosis 1, neurofibromatosis 2, and schwannomatosis. BMC Health Serv Res. 2018, 18(1): 668.
[42]   Marsden DL, Dunn A, Callister R, et al. Characteristics of exercise training interventions to improve cardiorespiratory fitness after stroke: a systematic review with meta-analysis. Neurorehabil Neural Repair. 2013, 27(9): 775-788.
[43]   Macko RF, Ivey FM, Forrester LW, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. Stroke. 2005, 36(10): 2206-2211.
[44]   Endres M, Gertz K, Lindauer U, et al. Mechanisms of stroke protection by physical activity. Ann Neurol. 2003, 54(5): 582-590.
[45]   Gertz K, Priller J, Kronenberg G, et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 2006, 99(10): 1132-1140.
[46]   Liebigt S, Schlegel N, Oberland J, et al. Effects of rehabilitative training and anti-inflammatory treatment on functional recovery and cellular reorganization following stroke. Exp Neurol. 2012, 233(2): 776-782.
[47]   Scha?bitz WR, Steigleder T, Cooper-Kuhn CM, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007, 38(7): 2165-2172.
[48]   Oster KA. Perioperative care of the patient with acoustic neuroma. AORN J. 2018, 108(2): 155-163.
[49]   Lv LQ, Hou LJ, Yu MK, et al. Hyperbaric oxygen therapy in the management of paroxysmal sympathetic hyperactivity after severe traumatic brain injury: a report of 6 cases. Arch Phys Med Rehabil. 2011, 92(9): 1515-1518.
[50]   Ince B, Arslan A, Dadaci M, et al. The effect of different application timings of hyperbaric oxygen treatment on nerve regeneration in rats. Microsurgery. 2016, 36(7): 586-592.
[51]   Nazario J, Kuffler DP. Hyperbaric oxygen therapy and promoting neurological recovery following nerve trauma. Undersea Hyperb Med: J Undersea Hyperb Med Soc. 2011, 38(5): 345.
[52]   Sanchez EC. Hyperbaric oxygenation in peripheral nerve repair and regeneration. Neurol Res. 2007, 29(2): 184-198.
[53]   Zentner M, Grandjean D, Scherer KR. Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion. 2008, 8(4): 494-521.
[54]   Chanda ML, Levitin DJ. The neurochemistry of music. Trends Cogn Sci. 2013, 17(4): 179-193.
[55]   Benz S, Sellaro R, Hommel B, et al. Music makes the world go round: the impact of musical training on non-musical cognitive functions-A review. Front Psychol. 2015, 6: 2023.
[56]   Zatorre RJ, Salimpoor VN. From perception to pleasure: music and its neural substrates. Proc Natl Acad Sci USA. 2013, 110(): 10430-10437.
[57]   Sihvonen AJ, S?rk?m? T, Leo V, et al. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017, 16(8): 648-660.
[58]   Shi N, Zhu CT, Li LY. Rehabilitation training and resveratrol improve the recovery of neurological and motor function in rats after cerebral ischemic injury through the Sirt1 signaling pathway. Biomed Res Int. 2016, 2016: 1732163.
[59]   Lin YJ, Wang GW, Wang BC. Rehabilitation treatment of spastic cerebral palsy with radial extracorporeal shock wave therapy and rehabilitation therapy. Medicine (Baltimore). 2018, 97(51): e13828.
[60]   Gwei-Djen L, Needham J. Celestial Lancets: A history and rationale of acupuncture and moxa. Psychology Press, 2002.
[61]   Yu HT, Li X, Lei XY, et al. Modulation effect of acupuncture on functional brain networks and classification of its manipulation with EEG signals. IEEE Trans Neural Syst Rehabilitation Eng. 2019, 27(10): 1973-1984.
[62]   Hill MD, Goyal M, Menon BK, et al. Efficacy and safety of nerinetide for the treatment of acute ischaemic stroke (ESCAPE-NA1): a multicentre, double-blind, randomised controlled trial. The Lancet. 2020, 395(10227): 878-887.
[63]   Kunter U, Rong S, Djuric Z, et al. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol. 2006, 17(8): 2202-2212.
[64]   Stepanova OV, Voronova АD, Chadin AV, et al. Isolation of rat olfactory ensheathing cells and their use in the therapy of posttraumatic cysts of the spinal cord. Bull Exp Biol Med. 2018, 165(1): 132-135.
[65]   Barton MJ, John JS, Clarke M, et al. The glia response after peripheral nerve injury: a comparison between schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies. Int J Mol Sci. 2017, 18(2): E287.
[1] Yunliang Wang, Xiaoling Guo, Jun Liu, Zuncheng Zheng, Ying Liu, Wenyong Gao, Juan Xiao, Yanqiu Liu, Yan Li, Manli Tang, Linlin Wang, Lin Chen, Di Chen, Deqiang Guo, Fei Liu, Weidong Chen, Baomin Chan, Bo Zhou, Aibing Liu, Gengsheng Mao, Hongyun Huang. Olfactory ensheathing cells in chronic ischemic stroke: A phase 2, double-blind, randomized, controlled trial[J]. Journal of Neurorestoratology, 2020, 8(3): 182-193.
[2] Hongyun Huang, Lin Chen, Gengsheng Mao, Hari Shanker Sharma. Clinical neurorestorative cell therapies: Developmental process, current state and future prospective[J]. Journal of Neurorestoratology, 2020, 8(2): 61-82.
[3] Xiaoling Guo, Xin Wang, Yan Li, Bo Zhou, Weidong Chen, Lihua Ren. Olfactory ensheathing cell transplantation improving cerebral infarction sequela: a case report and literature review[J]. Journal of Neurorestoratology, 2019, 7(2): 82-88.
[4] Gengsheng Mao, Yunliang Wang, Xiaoling Guo, Jun Liu, Zuncheng Zheng, Lin Chen. Neurorestorative effect of olfactory ensheathing cells and Schwann cells by intranasal delivery for patients with ischemic stroke: design of a multicenter randomized double-blinded placebo-controlled clinical study[J]. Journal of Neurorestoratology, 2018, 6(1): 74-80.
[5] Andrey S. Bryukhovetskiy. Translational experience of 28 years of use of the technologies of regenerative medicine to treat complex consequences of the brain and spinal cord trauma: Results, problems and conclusions[J]. Journal of Neurorestoratology, 2018, 6(1): 99-114.
[6] Hongyun Huang, Hari Shanker Sharma, Lin Chen, Ali Otom, Ziad M. Al Zoubi, Hooshang Saberi, Dafin F. Muresanu, Xijing He. Review of clinical neurorestorative strategies for spinal cord injury: Exploring history and latest progresses[J]. Journal of Neurorestoratology, 2018, 6(1): 171-178.
[7] Hongyun Huang, Lin Chen, Qingyan Zou, Fabin Han, Tiansheng Sun, Gengsheng Mao, Xijing He. Clinical cell therapy guidelines for neurorestoration (China version 2016)[J]. Journal of Neurorestoratology, 2017, 5(1): 39-46.
[8] Alok Sharma, Tongchao Geng, Hemangi Sane, Pooja Kulkarni. Clinical neurorestorative progresses in cerebral palsy[J]. Journal of Neurorestoratology, 2017, 5(1): 51-57.
[9] Yaping Feng, Tiansheng Sun, Lin Chen, Jiaxin Xie, Zhicheng Zhang, Hongyun Huang, Xijing He. Clinical therapeutic guideline for neurorestoration in spinal cord injury (Chinese version 2016)[J]. Journal of Neurorestoratology, 2017, 5(1): 73-83.
[10] Adeeb Al-Zoubi, Feras Altwal, Farah Khalifeh, Jamil Hermas, Ziad Al-Zoubi, Emad Jafar, Mohammed El-Khateeb. Ex vivo differentiation of human bone marrow-derived stem cells into neuronal cell-like lineages[J]. Journal of Neurorestoratology, 2016, 4(1): 35-44.
[11] Liyan Qiao, Hongyun Huang, Dafin F Muresanu. Clinical neurorestorative progress in Alzheimer's disease[J]. Journal of Neurorestoratology, 2015, 3(1): 1-10.
[12] Hongyun Huang, Gengsheng Mao, Lin Chen, Aibing Liu. Progress and challenges with clinical cell therapy in neurorestoratology[J]. Journal of Neurorestoratology, 2015, 3(1): 91-96.
[13] Liyan Qiao, Jun Lu, Hongyun Huang. Clinical neurorestorative progress in stroke[J]. Journal of Neurorestoratology, 2015, 3(1): 63-72.
[14] Tong Chao Geng, Victor W Mark. Clinical neurorestorative progress in multiple sclerosis[J]. Journal of Neurorestoratology, 2015, 3(1): 83-90.
[15] Nataliia Sych, Mariya Klunnik, Olena Ivankova, Irina Matyaschuk, Mariya Demchuk, Alla Novytska, Inna Arkhipenko, Iuliia Shalita, Dario Siniscalco. Efficacy of fetal stem cells in Duchenne muscular dystrophy therapy[J]. Journal of Neurorestoratology, 2014, 2(1): 37-46.