Please wait a minute...
Journal of Neurorestoratology  2020, Vol. 8 Issue (4): 252-269    doi: 10.26599/JNR.2020.9040022
Review Article     
The progress of biomaterials in peripheral nerve repair and regeneration
Yimeng Wang1(),Yuan Zhang2(),Xuemin Li1,(✉)(),Qiqing Zhang1,3,(✉)()
1 The Key Laboratory of Biomedical Material of Tianjin, Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Biomedical Engineering, Tianjin 300192, China
2 Fujian Bote Biotechnology Co., Ltd., Fuzhou 350013, Fujian, China
3 Institute of Biomedical Engineering, Shenzhen People’s Hospital (Second Clinical Medical College of Jinan University), Shenzhen 518020, Guangdong, China
Download: PDF (700 KB)      HTML
Export: BibTeX | EndNote (RIS)      


Repair and regeneration of the injured peripheral nerve (PN) is a challenging issue in clinics. Although the regeneration outcome of large PN defects is currently unsatisfactory, recently, the study of PN repair has considerably progressed. In particular, biomaterials for repairing PNs, such as nerve guidance conduits and nerve repair membranes, have been well developed. Herein, we summarize the anatomy of the PN, the pathophysiological features of the nerve injury, and the repair process post injury. Then, we highlight the progress in the development of natural and synthetic biomaterials and summarize the applications, advantages, and disadvantages of these materials. These materials can be used as nerve repair membranes and nerve conduits in the field of PN repair. Finally, we discuss the challenges encountered and development strategies for PN repair in the future.

Key wordsperipheral nerve      nerve repair and regeneration      biomaterials      nerve conduits      tissue engineering     
Received: 10 September 2020      Published: 07 February 2021
Fund:  National Key Research and Development Program of China during the 13th Five-Year Plan Period(2017YFC1103600)
Corresponding Authors: Xuemin Li,Qiqing Zhang     E-mail:;;;
Cite this article:

Yimeng Wang,Yuan Zhang,Xuemin Li,Qiqing Zhang. The progress of biomaterials in peripheral nerve repair and regeneration. Journal of Neurorestoratology, 2020, 8: 252-269.

URL:     OR

Fig. 1Schematic of the anatomy of a normal peripheral nerve (PN).
Fig. 2Schematic of the expected functions and characteristics of nerve conduits for PN repair.
MaterialTypeApplicationPros and consReference
Polyglycolic acid (PGA)SyntheticNerve conduitsStable[24,48,64,65]
Nerve allograftsBiodegradable
Polylactic acid (PLA)SyntheticNerve conduitsEasy to fabricate[24,48,64,66]
Poly(L-lactide-co-ε-caprolactone) (PLCL)SyntheticNerve conduitsLow immunogenicity, Biocompatible[24,48,64]
CollagenNaturalNerve conduitsDegradable[24,44,47,48,67,68]
Fibrin glueBioactivity, Immunogenic response
ChitosanNaturalNerve conduitsWeak degradability[24,46,48,67,68]
MembraneLow structural integrity
Silk fibroinNaturalNerve conduitsBiodegradable, Biocompatible, High structural integrity[24,48,67,68]
Table 1Application, advantages, and disadvantages of different materials.
Junggeon Park, et. al.[103]Gelatin methacryloyl (GelMA)Fabricating conductive hydrogel-based nerve guidance conduits (NGCs) using GelMA and graphene oxideFacilitating neural regrowth, myelination, and functional regeneration
Neshat Askarzadeh, et al.[104]Polycaprolactone (PCL)Using PCL and N,N′-disuccinimidyl carbonate (DSC) cross-linked sodium alginate to fabricate a bilayer nerve conduit (named as P-CA)P-CA conduit promotes the migration of Schwann cells along the axon
Maliheh Jahromi, et al.[105]Poly(L-lactide-co-glycolide) (PLGA)Gold nanoparticles (AuNPs) and brain-derived neurotrophic factor (BDNF)-encapsulated chitosan in laminin-coated nanofiber of PLGA conduitEnhancing axonal regeneration and remyelination
Akram Abdo Almansoori, et al.[106]Poly(L-lactic acid) (PLLA)Constructing a nerve conduit made of PLLA (outer layer) and tantalum (Ta; inner layer)Ta-PLLA nerve conduit induces peripheral nerve regeneration without scar tissue formation
Pouria Ebrahimi-Zadehlou, et al.[107]Chitosan10-mm sciatic nerve defects were bridged using a chitosan conduit and 100 μL silymarin nanoparticles were administered into the conduit.Silymarin nanoparticles loaded into the chitosan conduit improved functional recovery of transected sciatic nerve in rats
Piao Wang, et al.[108]CollagenUsing a collagen conduit with basic fibroblast growth factorPromoting functional facial nerve recovery
Table 2Research status of various nerve conduits.
[1]   Barakat-Walter I, Kraftsik R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction toward clinical therapy. Neural Regen Res. 2018, 13(4): 599-608.
[2]   Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med. 2019, 13(11): 2077-2100.
[3]   Olivo R, Tsao B. Peripheral nerve injuries in sport. Neurol Clin. 2017, 35(3): 559-572.
[4]   Carvalho CR, Oliveira JM, Reis RL. Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol. 2019, 7: 337.
[5]   Hou YJ, Wang XY, Zhang ZR, et al. Repairing transected peripheral nerve using a biomimetic nerve guidance conduit containing intraluminal sponge fillers. Adv Healthc Mater. 2019, 8(21): e1900913.
[6]   Chang W, Shah MB, Lee P, et al. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration. Acta Biomater. 2018, 73: 302-311.
[7]   Chiono V, Tonda-Turo C. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol. 2015, 131: 87-104.
[8]   Daly W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012, 9(67): 202-221.
[9]   Quan Q, Chang B, Meng HY, et al. Use of electrospinning to construct biomaterials for peripheral nerve regeneration. Rev Neurosci. 2016, 27(7): 761-768.
[10]   Manoukian OS, Baker JT, Rudraiah S, et al. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration. J Control Release. 2020, 317: 78-95.
[11]   Siemionow M, Uygur S, Ozturk C, et al. Techniques and materials for enhancement of peripheral nerve regeneration: a literature review. Microsurgery. 2013, 33(4): 318-328.
[12]   Stierli S, Napoli I, White IJ, et al. The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population. Development. 2018, 145(24).
[13]   Ying ZX, Pan CJ, Shao T, et al. Mixed lineage kinase domain-like protein MLKL breaks down myelin following nerve injury. Mol Cell 2018, 72(3): 457-468.e5.
[14]   Zhou Y, Notterpek L. Promoting peripheral myelin repair. Exp Neurol. 2016, 283(Pt B): 573-580.
[15]   Bando Y. Roads to formation of normal myelin structure and pathological myelin structure. Adv Exp Med Biol. 2019, 1190: 257-264.
[16]   Stewart JD. Peripheral nerve fascicles: anatomy and clinical relevance. Muscle Nerve. 2003, 28(5): 525-541.
[17]   Larson CE, Meng E. A review for the peripheral nerve interface designer. J Neurosci Methods. 2020, 332: 108523.
[18]   Grinsell D, Keating CP. Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int. 2014, 2014: 698256.
[19]   Jiang LF, Jones S, Jia XF. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities. Int J Mol Sci. 2017, 18(1): E94.
[20]   Lin MY, Manzano G, Gupta R. Nerve allografts and conduits in peripheral nerve repair. Hand Clin 2013, 29(3): 331-348.
[21]   Caillaud M, Richard L, Vallat JM, et al. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res. 2019, 14(1): 24-33.
[22]   Muangsanit P, Shipley RJ, Phillips JB. Vascularization strategies for peripheral nerve tissue engineering. Anat Rec (Hoboken). 2018, 301(10): 1657-1667.
[23]   Cattin AL, Burden JJ, van Emmenis L, et al. Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell. 2015, 162(5): 1127-1139.
[24]   Arslantunali D, Dursun T, Yucel D, et al. Peripheral nerve conduits: technology update. Med Devices. (Auckl) 2014, 7: 405-424.
[25]   Sullivan R, Dailey T, Duncan K, et al. Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci. 2016, 17(12): E2101.
[26]   Mallon S, Starcevic V, Rheinboldt M, et al. Sonographic evaluation of peripheral nerve pathology in the emergency setting. Emerg Radiol. 2018, 25(5): 521-531.
[27]   Chen PW, Piao XH, Bonaldo P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol 2015, 130(5): 605-618.
[28]   Cokluk C, Aydin K, Senel A. Presurgical ultrasound-assisted neuro-examination in the surgical repair of peripheral nerve injury. Minim Invasive Neurosurg. 2004, 47(3): 169-172.
[29]   Flores AJ, Lavernia CJ, Owens PW. Anatomy and physiology of peripheral nerve injury and repair. Am J Orthop: Belle Mead NJ. 2000, 29(3): 167-173.
[30]   Houdek MT, Shin AY. Management and complications of traumatic peripheral nerve injuries. Hand Clin. 2015, 31(2): 151-163.
[31]   Boyd KU, Nimigan AS, MacKinnon SE. Nerve reconstruction in the hand and upper extremity. Clin Plast Surg. 2011, 38(4): 643-660.
[32]   Menorca RM, Fussell TS, Elfar JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013, 29(3): 317-330.
[33]   Chhabra A, Madhuranthakam AJ, Andreisek G. Magnetic resonance neurography: current perspectives and literature review. Eur Radiol. 2018, 28(2): 698-707.
[34]   Romeo-Guitart D, Casas C. Network-centric medicine for peripheral nerve injury: Treating the whole to boost endogenous mechanisms of neuroprotection and regeneration. Neural Regen Res. 2019, 14(7): 1122-1128.
[35]   Konofaos P, Ver Halen JP. Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg. 2013, 29(3): 149-164.
[36]   Yannas IV, Tzeranis DS, So PTC. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen. 2017, 25(2): 177-191.
[37]   Burnett MG, Zager EL. Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus. 2004, 16(5): E1.
[38]   Scheib J, H?ke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013, 9(12): 668-676.
[39]   Griffin JW, Hogan MV, Chhabra AB, et al. Peripheral nerve repair and reconstruction. J Bone Joint Surg Am. 2013, 95(23): 2144-2151.
[40]   Ahmad I, Fernando A, Gurgel R, et al. Merlin status regulates p75(NTR) expression and apoptotic signaling in Schwann cells following nerve injury. Neurobiol Dis. 2015, 82: 114-122.
[41]   Li RJ, Liu ZG, Pan YM, et al. Peripheral nerve injuries treatment: a systematic review. Cell Biochem Biophys. 2014, 68(3): 449-454.
[42]   Johnson EO, Soucacos PN. Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury. 2008, 39(): S30-S36.
[43]   Ghergherehchi CL, Mikesh M, Sengelaub DR, et al. Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods. 2019, 314: 1-12.
[44]   Sameem M, Wood TJ, Bain JR. A systematic review on the use of fibrin glue for peripheral nerve repair. Plast Reconstr Surg. 2011, 127(6): 2381-2390.
[45]   Haastert-Talini K, Geuna S, Dahlin LB, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials. 2013, 34(38): 9886-9904.
[46]   Carvalho CR, Costa JB, Costa L, et al. Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomater Sci. 2019, 7(12): 5451-5466.
[47]   Chen MH, Chen PR, Chen MH, et al. Gelatin-ricalcium phosphate membranes immobilized with NGF, BDNF, or IGF-1 for peripheral nerve repair: an in vitro and in vivo study. J Biomed Mater Res A. 2006, 79(4): 846-857.
[48]   Gaudin R, Knipfer C, Henningsen A, et al. Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. Biomed Res Int. 2016, 2016: 3856262.
[49]   Scholz T, Krichevsky A, Sumarto A, et al. Peripheral nerve injuries: an international survey of current treatments and future perspectives. J Reconstr Microsurg. 2009, 25(6): 339-344.
[50]   Wang XD, Hu W, Cao Y, et al. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain. 2005, 128(Pt 8): 1897-1910.
[51]   Dellon AL, MacKinnon SE. Basic scientific and clinical applications of peripheral nerve regeneration. Surg Annu. 1988, 20: 59-100.
[52]   Lee SK, Wolfe SW. Peripheral nerve injury and repair. J Am Acad Orthop Surg. 2000, 8(4): 243-252.
[53]   Bozkurt A, Lassner F, O'Dey D, et al. The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012, 33(5): 1363-1375.
[54]   Ray WZ, MacKinnon SE. Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol. 2010, 223(1): 77-85.
[55]   Rosen JM, Pham HN, Abraham G, et al. Artificial nerve graft compared to autograft in a rat model. J Rehabil Res Dev. 1989, 26(1): 1-14.
[56]   de Ruiter GC, Malessy MJ, Yaszemski MJ, et al. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus. 2009, 26(2): E5.
[57]   Aghanasir F, Aghaei H, Imani Fooladi AA, et al. Expression of neutrophil gelatinase-associated lipocalin (NGAL) in peripheral nerve repair. J Recept Signal Transduct. 2016, 36(4): 429-434.
[58]   Jiang BG, Han N, Rao F, et al. Advance of peripheral nerve injury repair and reconstruction. Chin Med J (Engl). 2017, 130(24): 2996-2998.
[59]   Gerth DJ, Tashiro J, Thaller SR. Clinical outcomes for Conduits and Scaffolds in peripheral nerve repair. World J Clin Cases. 2015, 3(2): 141-147.
[60]   Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012, 43(5): 553-572.
[61]   Nectow AR, Marra KG, Kaplan DL. Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev. 2012, 18(1): 40-50.
[62]   Muheremu A, Ao Q. Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. Biomed Res Int. 2015, 2015: 237507.
[63]   Deal DN, Griffin JW, Hogan MV. Nerve conduits for nerve repair or reconstruction. J Am Acad Orthop Surg. 2012, 20(2): 63-68.
[64]   Yi S, Xu L, Gu X. Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol. 2019, 319: 112761.
[65]   Li LJ, Abuduaini H, Ni DK, et al. Preparation of mNGF-conjugated iron oxide nanoparticles and repair of peripheral nerve injury in rats under applied external magnetic field. Pharmaceutical-sciences 2020, 20(): 30-37.
[66]   Riley DC, Bittner GD, Mikesh M, et al. Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res. 2015, 93(4): 572-583.
[67]   Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater 2020, 106: 54-69.
[68]   Belanger K, Dinis TM, Taourirt S, et al. Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol Biosci. 2016, 16(4): 472-481.
[69]   Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery. 2010, 30(7): 574-588.
[70]   Merrell JC, Russell RC, Zook EG. Polyglycolic acid tubing as a conduit for nerve regeneration. Ann Plast Surg. 1986, 17(1): 49-58.
[71]   Dellon AL, MacKinnon SE. An alternative to the classical nerve graft for the management of the short nerve gap. Plast Reconstr Surg. 1988, 82(5): 849-856.
[72]   Evans GR, Brandt K, Widmer MS, et al. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials. 1999, 20(12): 1109-1115.
[73]   Evans GR, Brandt K, Katz S, et al. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials. 2002, 23(3): 841-848.
[74]   Hsu SH, Chan SH, Chiang CM, et al. Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials. 2011, 32(15): 3764-3775.
[75]   Costa Serr?o de Araújo G, Couto Neto B, Harley Santos Botelho R, et al. Clinical evaluation after peripheral nerve repair with caprolactone neurotube. Hand (N Y). 2017, 12(2): 168-174.
[76]   Chiriac S, Facca S, Diaconu M, et al. Experience of using the bioresorbable copolyester poly(DL-lactide- -caprolactone) nerve conduit guide Neurolac? for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur Vol. 2012, 37(4): 342-349.
[77]   Leibig N, Boyle V, Kraus D, et al. C3 toxin and poly-DL-lactide-ε-caprolactone conduits in the critically damaged peripheral nervous system: a combined therapeutic approach. Ann Plast Surg. 2015, 74(3): 350-353.
[78]   Bos I, Lohmeyer J, Senyaman O, et al. Removal of collagen nerve conduits (NeuraGen) after unsuccessful implantation: focus on histological findings. J Reconstr Microsurg. 2013, 29(8): 517-522.
[79]   Onode E, Uemura T, Takamatsu K, et al. Nerve capping with a nerve conduit for the treatment of painful neuroma in the rat sciatic nerve. J Neurosurg. 2019: 1-9.
[80]   Georgiou M, Golding JP, Loughlin AJ, et al. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials 2015, 37: 242-251.
[81]   Houshyar S, Bhattacharyya A, Shanks R. Peripheral nerve conduit: materials and structures. ACS Chem Neurosci. 2019, 10(8): 3349-3365.
[82]   B?k M, Gutkowska ON, Wagner E, et al. The role of chitin and chitosan in peripheral nerve reconstruction. Polim Med. 2017, 47(1): 43-47.
[83]   Li RX, Liu HW, Huang HT, et al. Chitosan conduit combined with hyaluronic acid prevent sciatic nerve scar in a rat model of peripheral nerve crush injury. Mol Med Rep. 2018, 17(3): 4360-4368.
[84]   Patel M, Vandevord PJ, Matthew H, et al. Video-gait analysis of functional recovery of nerve repaired with chitosan nerve guides. Tissue Eng. 2006, 12(11): 3189-3199.
[85]   Ishikawa N, Suzuki Y, Ohta M, et al. Peripheral nerve regeneration through the space formed by a chitosan gel sponge. J Biomed Mater Res. A 2007, 83(1): 33-40.
[86]   Yuan Y, Zhang PY, Yang YM, et al. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004, 25(18): 4273-4278.
[87]   Gu JH, Hu W, Deng AD, et al. Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. J Tissue Eng Regen Med. 2012, 6(2): 163-168.
[88]   Cheng MY, Cao WL, Gao Y, et al. Studies on nerve cell affinity of biodegradable modified chitosan films. J Biomater Sci Polym Ed. 2003, 14(10): 1155-1167.
[89]   Alessandrino A, Fregnan F, Biagiotti M, et al. SilkBridge?: a novel biomimetic and biocompatible silk-based nerve conduit. Biomater Sci. 2019, 7(10): 4112-4130.
[90]   Magaz A, Faroni A, Gough JE, et al. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv Healthc Mater. 2018, 7(23): e1800308.
[91]   Wang CY, Jia YC, Yang WC, et al. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J Biomed Mater Res A. 2018, 106(7): 2070-2077.
[92]   Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater. 2015, 41: 43-55.
[93]   Kusuhara H, Hirase Y, Isogai N, et al. A clinical multi-center registry study on digital nerve repair using a biodegradable nerve conduit of PGA with external and internal collagen scaffolding. Microsurgery. 2019, 39(5): 395-399.
[94]   Yamanaka T, Hosoi H, Murai T, et al. Regeneration of the nerves in the aerial cavity with an artificial nerve conduit ——reconstruction of chorda tympani nerve gaps-. PLoS One. 2014, 9(4): e92258.
[95]   Toba T, Nakamura T, Lynn AK, et al. Evaluation of peripheral nerve regeneration across an 80-mm gap using a polyglycolic acid (PGA)——collagen nerve conduit filled with laminin-soaked collagen sponge in dogs. Int J Artif Organs. 2002, 25(3): 230-237.
[96]   Kabiri M, Oraee-Yazdani S, Dodel M, et al. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering. Excli J. 2015, 14: 851-860.
[97]   Kabiri M, Oraee-Yazdani S, Shafiee A, et al. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci. 2015, 22: 35.
[98]   Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, et al. Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J Biomed Nanotechnol 2011, 7(2): 276-284.
[99]   Cattin AL, Lloyd AC. The multicellular complexity of peripheral nerve regeneration. Curr Opin Neurobiol. 2016, 39: 38-46.
[100]   Ashraf R, Sofi HS, Beigh MA, et al. Recent trends in peripheral nervous regeneration using 3D biomaterials. Tissue Cell. 2019, 59: 70-81.
[101]   Shea GK, Mok F. Optimization of nanofiber scaffold properties towards nerve guidance channel design. Neural Regen Res. 2018, 13(7): 1179-1180.
[102]   Sarker M, Naghieh S, McInnes AD, et al. Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnol J 2018, 13(7): e1700635.
[103]   Park J, Jeon J, Kim B, et al. Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration. Adv Funct Mater. 2020, 30(39): 2003759.
[104]   Askarzadeh N, Nazarpak MH, Mansoori K, et al. Bilayer cylindrical conduit consisting of electrospun polycaprolactone nanofibers and DSC cross-linked sodium alginate hydrogel to bridge peripheral nerve gaps. Macromol Biosci. 2020, 20(9): e2000149.
[105]   Jahromi M, Razavi S, Seyedebrahimi R, et al. Regeneration of rat sciatic nerve using PLGA conduit containing rat ADSCs with controlled release of BDNF and gold nanoparticles. J Mol Neurosci. 2020, in press, .
doi: 10.1007/s12031- 20-01694-6
[106]   Almansoori AA, Hwang C, Lee SH, et al. Tantalum - Poly (L-lactic acid) nerve conduit for peripheral nerve regeneration. Neurosci Lett. 2020, 731: 135049.
[107]   Ebrahimi-Zadehlou P, Najafpour A, Mohammadi R. Assessments of regenerative potential of silymarin nanoparticles loaded into chitosan conduit on peripheral nerve regeneration: a transected sciatic nerve model in rat. Neurol Res. 2020: 1-9.
[108]   Wang P, Zhao H, Yao Y, et al. Repair of facial nerve crush injury in rabbits using collagen plus basic fibroblast growth factor. J Biomed Mater Res A. 2020, 108(6): 1329-1337.
[109]   Li GC, Zhao XY, Zhao WX, et al. Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials. 2014, 35(30): 8503-8513.
[110]   Dixon AR, Jariwala SH, Bilis Z, et al. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials. 2018, 186: 44-63.
[1] Weizuo Wang, Qiang Ao. Research and application progress on dural substitutes[J]. Journal of Neurorestoratology, 2019, 7(4): 161-170.
[2] Zuhal Altunkaynak Berrin, Delibaş Burcu, Altun Gamze, Gülsüm Deniz Ömür. Melatonin and sciatic nerve injury repair: a current perspective[J]. Journal of Neurorestoratology, 2018, 6(1): 49-60.
[3] Andrey S. Bryukhovetskiy. Translational experience of 28 years of use of the technologies of regenerative medicine to treat complex consequences of the brain and spinal cord trauma: Results, problems and conclusions[J]. Journal of Neurorestoratology, 2018, 6(1): 99-114.
[4] Feng Zhang, Xiangzhi Meng, Fang Lu, Aixian Liu, Hongyun Huang. Olfactory ensheathing cell transplantation for a patient with chronic sciatic nerve injury[J]. Journal of Neurorestoratology, 2017, 5(1): 1-4.
[5] Qiang Ao. Progress of nerve bridges in the treatment of peripheral nerve disruptions[J]. Journal of Neurorestoratology, 2016, 4(1): 107-113.